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Abstract—This paper presents our contract-based design tech-
nique for formalizing requirements during the design phase
of a complicated and safety-critical automotive component. In
our approach, contracts are created using property specification
patterns to eliminate ambiguous unstructured natural language
requirements, which could lead to misinterpretations or mis-
matched interfaces in the integration phases of the design process.

These patterns are then automatically transformed into Sig-
nal Temporal Logic (STL) formulas. The STL formulas are
verified on a modeled system of the component, utilizing the
Matlab® toolbox Breach. This approach validates the industrial
requirements described in the contracts, and can help achieve
the requirement-based testing demanded by automotive safety
standard ISO 26262.

Index Terms—Automotive, Requirement Validation, Formaliz-
ing Requirements, Contract-based Design, Property Specification
Patterns, Signal Temporal Logic, Verification.

I. INTRODUCTION

Cyber-Physical Systems (CPS) are distributed embedded
computers that monitor and control physical processes; they
assist us or take over tasks and are considered as one of
the enablers of the fourth industrial revolution. CPS are
becoming more complex and evolving at an enormous rate,
presenting new challenges in all aspects of their design, such
as the definition and validation of requirements and system
specifications [1]. In particular, multi-disciplinary teams need
to avoid inconsistencies to make the design process more
efficient. This will reduce development costs of systems and
the time to market [1]. Therefore, optimizing a design process
is an important topic in industry.

A considerable part of this process is heuristic and vul-
nerable for misinterpretation, such as design techniques or
requirements based on natural language. Formalization can
eliminate the ambiguity and vagueness of requirements. This
formalization assists industrial design processes for functional
safety in adhering to the ISO 26262 standard [2], which con-
cerns functional safety of electrical and/or electronic systems
for road vehicles. The ISO 26262 standard places considerable
emphasis on the verification of requirements with the purpose
of identifying and eliminating inconsistencies and augmenting
the overall quality of requirements.

The Automated and Simulation-based Functional Safety
Engineering Methodology (aSET) project1 is conducted by
Flanders Make, the CoSys-Lab of the University of Antwerp
and various industrial partners around the Flanders province of
Belgium, such as DANA Belgium. The project’s objective is
to optimize design processes of functional safety components
in the context of ISO 26262.

One effort of the project is introducing a contract-based
approach to the design process of the industrial partners. In
our work, textual informal requirements are (manually) written
as formalized design contracts, which are then (automatically)
translated into formal temporal logic. This formal logic has
constructs which reason about the signals of the system,
including timing constraints. An example is: ‘when signal 1
turns positive, signal 2 becomes 100 within 2 sec.’

The objective is to improve the quality of the require-
ments and avoid misinterpretations. Section IV-C demonstrates
examples of where this formalization process was used to
detect requirement misinterpretations. When requirements are
transformed into formal logic, other improvements in the
design process can also be accomplished. For example, the
system can be validated by verifying whether the system
signals satisfy the requirements defined by the formal logic.
Advantages of this include a reduction in the time to write
tests, as well as better traceability on the satisfaction of the
requirements.

The core contributions of this paper are to explain the
implementation of this contract-based approach on an indus-
trial use-case, as well as provide examples of the benefits
of this approach. Section II describes the industrial use-case,
the current model-based design process, and a selection of
requirements. Our contract-based design approach is then ex-
plained in Section III, along with a description of the contract
language. Section IV details the specification of requirements
in the contract language, the verification of the contracts on
the system, and examples of inconsistencies encountered in
the EDL requirements. Related work similar to our approach
is presented in Section V, while we conclude with a pointer
to future work in Section VI.

1https://www.flandersmake.be/en/projects/aset



II. INDUSTRIAL CASE STUDY

This section will present the case study used in this paper,
which is a demonstrator model from an Electronic Differen-
tial Lock (EDL). This model has been designed by DANA
Belgium, a company specialized in automotive driveline tech-
nologies.

An EDL is a system providing the functionality to enable
and disable the wheels on the same axle to rotate at different
speeds. The EDL can have an open differential, where the
wheels are able to rotate at a different speed, or a closed
differential where the wheels will travel at the same speed.

When the vehicle is turning in a curve, an open differential
can prevent wheel slippage, as the wheel on the outside of the
curve has to travel a greater distance and should therefore not
be locked in speed with the other wheel. In contrast, a closed
differential allows for more traction when accelerating from
standstill on slippery terrain.

A. Design Process

Requirements for the EDL system were developed during
the design process shown in Figure 1. This design process is a
life-cycle development model based on the “V-cycle”, which
is common in the automotive industry [3]. This development
model contains five different phases or life-cycles. Each phase
has a decomposition and definition step on the left-hand side
and a corresponding integration and verification step on the
right-hand side.

First, the stakeholder requirements are negotiated and de-
fined with a client. This contains a structural specification
and the system’s functional black box with interfaces. It
also contains a behavioural specification consisting of the
requirements allocated on the system with validation criteria,
state machines, sequence diagrams, etc.

In the functional concept phase the black-box interfaces are
refined and a functional breakdown of the system is performed.
Requirements are also added and refined during this phase.

The next phase is the system architecture phase. In this
phase the system is broken down in elements of different fields
(electronics, mechanics, software, etc.) and their interfaces
are defined. Requirements are allocated to the elements and
are matched with validation criteria to be verified in the
corresponding integration steps. In this design phase, more
technical specifications are added.

In the fourth phase, the software and hardware architecture
design phase, the elements of the previous phase are subdi-
vided into smaller units. Requirements are again allocated to
the smaller units and will be verified by validation criteria in
the corresponding integration steps.

In the last design phase, the component design phase, the
system is developed according to the requirements specified
during the previous design phases.

Table I presents a selection of requirements from this EDL
demonstrator model, along with the design phase in which
they were defined. In Section IV, we will demonstrate how
these requirements are transformed into verifiable contracts.

Fig. 1. The V-cycle design process.

B. Requirement Management

The design process followed in the case study, is a
component-based design process, wherein complex systems
are divided into smaller components. After the development
of the different components, all the components are integrated
to form the system. This design method might introduce some
problems in the integration phase such as: incorrect interfaces,
malfunctions, safety criteria that are not met, etc. The origin
of those problems is often related to the management of the
requirements. This because the traceability of requirements is
lost between the different design phases.

Another reason can be that requirements are structured in
different aspects or viewpoints, such as safety, mechanical,
or software viewpoints. Often, these different viewpoints are
developed by different people, teams or other companies all
having different skills, frameworks and tools. This can lead to
missing functionality or safety violations, which may not be
caught until later in the development cycle increasing the cost
to design and test the system.

In the existing design process, a model-based engineering
approach is used. Meaning that for each phase, a system model
is created or refined which contains the structure, behaviour,
requirements and parametrics of the system [4].

In this paper, we address the mentioned issues in the current
design process by introducing a contract-based approach.

III. CONTRACT-BASED DESIGN

Here the basis of contract-based design is presented, along
with a description of how the design process in Section II-A
is augmented with contracts. The contract language itself is
then examined in the remainder of this section.

A. Contract-based Design Benefits

In contract-based design (CBD), a contract defines the
assumptions of the environment and the guarantees of a
component’s behaviour under these assumptions [5]. This can
enhance the design process of a system in the following ways:



Req. Name Description Originating Design Phase
Response to Driver Locking The system must close the EDL after receiving a locking command from the driver. Stakeholder Requirements
Command
Inform Driver During normal operation and within t_SYSTEM_RESPONSE, the system must inform

the driver about the EDL being in one of the following three operational states: EDL
open state, or EDL close state, or EDL in transition between open and closed.

Stakeholder Requirements

Verify EDL State Before reporting, the system must verify the EDL state by comparing the system EDL
state with the physical position of the EDL and with vehicle dynamics data.

Functional Concept

Logic Locking Command During normal operation (not during initialization or shutdown), the logic must generate
a 12 Volt request to an analogue output hardware driver, within 50 milliseconds after
receiving the rising edge of a pulse with valid duration. [This is only] if the current
system EDL state is Open, and a falling edge pulse of minimal duration t_MIN_REQ
and maximal duration t_MIN_REQ.

System Architecture

TABLE I
SELECTED REQUIREMENTS FOR THE ELECTRONIC DIFFERENTIAL LOCK (EDL) CASE STUDY.

• Addressing of integration complexity. Contracts can de-
fine an architectural description that outlines the inter-
faces between the components, the used units, value
ranges, etc. This avoids inconsistencies between different
subsystems and problems in the integration phase.

• Better management of requirements. This because re-
quirements can only be tested on implementations. Like-
wise, requirements cannot be simulated in most cases.
Contracts offer improved support for proving the satis-
faction of requirements.

• Addressing of complex chains between original equip-
ment manufacturers (OEMs) and suppliers by decompos-
ing contracts of the needed subsystems.

B. Contract-Based Design Process

The contract-based design can be integrated into the current
model-based design process. Figure 2 shows the new design
process where the contract-based approach is implemented.
Note that Figure 2 focuses on the first four stages of the
V-cycle in Figure 1: Stakeholder Requirements, Functional
Concept, System Architecture, and Software/Hardware Archi-
tecture.

In the new process, requirements are specified as contracts
in the different life-cycles of the systems development. These
contracts enable early validation of the system, improving the
design process. For example, models are created during the
Functional Concept stage which define the system function-
ality. These models can then be used to simulate the system,
and validate the requirements (described as contracts) from the
Stakeholders Requirements and Functional Concept stages.

This early validation helps designers to determine if the
functionality of a system is properly defined during the
Functional Concept phase, before determining the physical
implementation. During the following System Architecture and
the Software/Hardware Architecture design phases, additional
contracts will be specified. During the component design,
testing, and integration phases of the system’s development,
this set of contracts provides a structured process to validate
requirements and improve the verification process of a system.

C. Contract Language

This section and the following will briefly describe the
constructs contained in the contract language, such as the

Fig. 2. Process model for contract-based design approach.



Fig. 3. Basic format of a contract which contains a placeholder description,
event, property, scope, and pattern.

temporal logic constructs which are encoded in property
specification scopes and patterns. As well, the operators used
to specify statements on system signals will also be presented.
The contract language is still under development in the aSET
project, and the full formalization of the syntax and semantics
will be presented in future work.

Figure 3 presents the basic format of a contract. The
first line provides a short ID for the contract, while the
longname field provides a human-readable version of the
name. The description stores the informal textual require-
ment, which is important to retain for comprehension of the
contract.

As well, as the statements, scope, and pattern of the contract
are optional, the first step in the development of a contract may
be to only have the textual description. Note however that such
a contract would not be able to be verified, as discussed in
Section IV-D.

In our approach, the requirement engineer must manually
interpret the natural language text to create the appropriate
contract, as automatic contract production is out of the scope
of our approach. This manual process can lead to misinterpre-
tations, as shown in Section IV-C. However, the next step of
transforming the contract language into a formalized logic is
performed automatically (see Section III-F1), to abstract the
complex temporal logic formulas away from the requirement
engineer.

Linking the informal natural language of the requirement
description with a formalized contract language and the
subsequently generated formal logic assists in making the
requirement less ambiguous. Section IV-C discusses how this
formalization improves requirement quality as the resulting
temporal logic has a precisely defined syntax and semantics.

D. Temporal Logic

System requirements, especially safety-critical require-
ments, relate to the notion of time. Some example require-
ments are:

• When a button is pushed, eventually an action will be
performed;

• Before this error signal is sent, this light is always off;
• After passing these environmental thresholds, the system

will never be guaranteed to work again;

alw((DWS[t] == 1 and vehicleEDLState[t] == EDL OPEN)
or
(((Cornering[t] == 1 and DWS[t] == 0) and vehicleEDL-
State[t] == EDL CLOSED) or
((DrivingSlow[t] == 1 or (Cornering[t] == 0 and DWS[t]
== 0)) and vehicleEDLState[t] == EDL DK)))

Fig. 4. The STL formula in Breach syntax automatically generated for the
TR57 contract.

• A system will be powered until a certain condition is met.
Temporal logic enables reasoning about time in a formal

way, and allows for verification given a set of system signals
as in Section IV-D.

There are different types of logic existing under the category
of temporal logic, such as Linear Temporal Logic (LTL) and
Metric Temporal Logic (MTL). This contract language targets
Signal Temporal Logic (STL), which is an extension of MTL
which deals with continuous signals in a system as in the
systems under study. In particular, STL contains predicates
over real values, which enable the contract language to reason
about signal values as events [6].

E. Property Specification Patterns

Reasoning about and writing correct temporal logic is a
time-consuming and challenging task that often requires an
expert [7]. As an example of this, Figure 4 shows the STL
formula which has been automatically generated for the TR57
contract in Figure 10. The formula is dense and difficult
to reason about yet it only contains one temporal operator
(always). Note that this contract is verified by the Breach
toolbox in Figure 13.

To overcome the problem of manually specifying temporal
patterns, Dwyer et al. [8] developed property specification
patterns. Each pattern in this collection maps directly to an
STL formula, and yet they retain a more natural language
format. Thus, property specification patterns are a pragmatic
way to write STL formulas while maintaining a familiar syntax
for the requirements engineer.

The patterns in the contract language for the aSET project
are based on the pattern catalogue of Autili et al. [7]. This
improvement over Dwyer refers to events in the system, and
how they relate to each other in time. The pattern catalogue
includes:

• Absence: P may never occur.
• Universality: P is always true. Negation of the absence

pattern.
• Existence: P occurs at least once inside the scope.
• Bounded Existence: an extension of the Existence pat-

tern, also defining how many times P occurs.
• Steady State: P will eventually hold.
• Transient State: P will hold after exactly t time units.
• Recurrence: P has to occur at least once during each t

time units.
• Min Duration: whenever P occurs it must hold at least

t time units.



• Max Duration: whenever P occurs it must hold less than
t time units.

• Precedence: if P holds, then it must have been the case
that S has occurred.

• Until: P holds without interruption until S holds.
• Response: if P has occurred, then in response S holds

continually.
• PrecedenceChain1N: if S has occurred and afterwards

multiple events (Q, R, . . . ) hold, then it must have been
the case that P has occurred.

• PrecedenceChainN1: if P holds, then it must have been
the case that S and afterwards multiple events (Q, R, . . . )
have occurred before P holds.

• Response1N: if P has occurred, then in response S
eventually holds, followed by multiple events (Q, R, . . . ).

• ResponseN1: if S followed by multiple events (Q, R, . . . )
have occurred, then in response P eventually holds.

Most of these patterns can also be augmented with timing
constraints. For example, the ResponsePattern pattern can
include the condition that the event S occurs within 50 mil-
liseconds of P occurring. This is shown in a contract example
in Figure 10. This increase in expressiveness is required for
the safety-critical requirements studied in this research.

These patterns are then augmented with scopes, which de-
fine when the pattern must hold. Section IV contains multiple
examples of their interaction. Scopes are useful in a complex
system, as these systems have a notion of states where the
behaviour of the system changes.

The five scopes available in the contract language are:

• globally: the pattern always holds.
• before Q: the pattern holds before Q.
• after Q: the pattern holds after Q.
• between Q and R: the pattern holds between Q and R.
• after Q until R: the pattern holds after Q until R.

F. Statements

In the patterns and scopes, the statements P, Q, R and S
are events, which must relate to the signals of the system
being verified. However, the property specification pattern
literature does not provide operators for the cyber-physical
systems which we study. Thus, one component of the de-
velopment of the contract language is a sub-language for
defining statements. This sub-language can refer to signals in
the system, and offers mathematical and engineering operators
for reasoning about those signals.

As an example of statements, a requirement from the
EDL is: “the system must close the EDL after receiving a
locking command from the driver”. This requirement needs
two statements to be described in the contract language which
are shown in Figure 5. The first is an event, which represents
occasional conditions occurring throughout the system’s oper-
ation. The event in the requirement driver_lock concerns
the receiving of the locking command. The definition of this
event is that the system signal DRIVER_LOCK, which is a
Boolean value, becomes true.

Fig. 5. Example of an event and a property for a contract.

In contrast, a property in our contract language describes
system statements that hold for some amount of time after
becoming true. Note that this is closely related to the notion
of system state, though it is slightly broader as it can include
transient states. Figure 5 shows the close_EDL property,
which detects when the EDL is closed. This is defined by
checking whether the system signal EDL_STATE is in the
state EDL_State CLOSED.

A statement must be true or false to be used in the patterns
and scopes. Therefore the definition of these statements is a
predicate over the states and signals in the system, involving
operators such as comparisons. These predicates are evaluated
at each point of time in the system by the underlying temporal
logic checker. In this approach, we employ the Breach toolbox
as discussed in Section IV-D.

1) Contract Language Editor: The development of the
contract language has also involved the creation of an editor
for the requirement engineer to easily specify these contracts.
The framework for defining the contract language and editor is
XText2. Benefits of this platform include syntax highlighting,
auto-completion, template support, and error-checking.

As well, contracts are transformed into Signal Temporal
Logic (STL) formulas to be verified. XText allows the au-
tomatic generation of those formulas whenever the contract
file is saved, reducing the burden on the requirement engineer
to produce those files. This transformation occurs whenever
the keyword generate-STL is written at the bottom of a
contract.

IV. FROM REQUIREMENTS TO VALIDATED CONTRACTS

This section will highlight the process in which a require-
ment is transformed into a contract and then verified. As well,
concrete examples of improving requirement quality will be
highlighted.

A. System Models

The context for employing contracts is during the design
of a safety-critical component. To support this activity, the
contract language can refer to elements of a system design
model.

As part of the aSET project, a language definition for
designing safety-critical systems has been developed. This
language definition is termed a meta-model, which contains the
types, structure, rules and constraints available for writing an-
other model [9]. This meta-model, named Formal Functional
Safety Model (FuSaFoMo), supports the functional safety arte-
facts of the ISO 26262 standard, like elements, items, etc. This
FuSaFoMo enables an architectural description of the system.

2https://www.eclipse.org/Xtext/



This is a similar description to that given by a block definition
diagram, internal block diagram, and activity diagram in
SysML [4]. For this industrial case study, an instance of the
FuSaFoMo meta-model for the Electronic Differential Lock
(EDL) was created, defining the design of the component.
Additionally, a Simulink model was (manually) produced as an
implementation of the behaviour to be used in the verification
checks (see Section IV-D).

Once a system model that is an instance of the Formal
Functional Safety model is created, the contract language can
then refer to ports, connections, parameters, and states from
the EDL model. These system elements are used as the source
of signals to be used in the definition of properties and events.

Note that if a system model is not available, signal names
can still be written in the contracts, and the link to the
system model performed later. This decoupling was requested
by our industrial partners as a way of offering flexibility in
the contract development process. The requirements engineer
should not be blocked on the definition of the system model, as
this could be performed by a separate team. Textual references
can be used to design the contract, although the requirement
engineer must manually check that the signal names match
the simulated model during the verification process (see Sec-
tion IV-D).

B. Defining Contracts

An example process of defining a contract and its connec-
tion to the EDL system model will be presented in this section.
The requirement selected is: “the system must close the EDL
after receiving a locking command from the driver”, which
will be written as the contract in Figure 6.

1) Identification: The contract ID, longname, and
description are created from this textual requirement.
Note that most likely the requirement is directly copied into
the description.

Then, either the statements for the contract or scope and
pattern will be defined. This explanation will focus on the
statements first, but for some contracts it may be preferable to
reason about the scope and pattern first.

2) Statements: As indicated in Table I, this requirement
is from the Stakeholder Requirements design phase of the
EDL component. Therefore, only a black box view of the
component is available, shown in Figure 7. This view hides
the internal details of the component and only exposes the
outside port connections.

The event driver_lock in the contract will re-
fer to a port in this black box model. The keyword
Port is used to indicate that this event refers to the
port driverCommands_closingRequest. Note that the
naming scheme indicates that the port closingRequest is
part of the interface driverCommands.

The property close_EDL must obtain the state of the
EDL from the black box model. However, as the state is not
directly exposed by the black box model in a port, no explicit
connection can be made at this stage. This connection will

Fig. 6. Contract FR07, closing the EDL in response to a driver command.

Fig. 7. The EDL system as a black box component with incoming and
outgoing ports.

be made at a later point in the design process when more
information is available.

3) Scope and Pattern: Either before or after the con-
tract statements are defined, the scope and pattern of the
requirement can be created. As the requirement states that
the system must perform an action in response to receiving
a command, the Response Pattern is most appropriate. The
command becomes the first statement in the pattern, and the
state checking is the second statement.

The scope of a contract is chosen by examining when the
pattern is valid for the system. As the enabling condition
are not specified, the assumption could be made that this
requirement is always valid. In this case, a Global scope would
be chosen.

However, this assumption may not be valid. If the system
is unpowered or in an error state, then this requirement does
not hold. This imprecision arises because this requirement was
defined early on in the EDL design process, in the Stakeholder
Requirement phase. In later phases, this requirement will be
refined to become more precise. Nevertheless, the contract
language assists the requirements engineer in detecting this
incompleteness, by providing the constructs to reason about
which periods of system state enable a pattern.

C. Improving Requirement Quality

The integration of the contract language in the design
process for the EDL component uncovered a number of issues
with requirement quality. Here two cases are presented to
illustrate how the quality of the requirements can be improved
by using the contract language, which has a positive impact
on our industrial partners.



Fig. 8. Contract FR12, periodically reporting the state of the EDL.

1) Ambiguous Requirement: The use of natural language
for specifying requirements can lead to ambiguity. For exam-
ple, the FR12 requirement states: “During normal operation
and within t_SYSTEM_RESPONSE, the system must report
to the ESP that the EDL is in one of the following two states:
Open or Closed. Unless the EDL is confirmed open, the system
must report to the ESP that the EDL is closed”.

One interpretation of this requirement is that when the
system is queried, it must respond with the state of the EDL,
within the duration t_SYSTEM_RESPONSE. This contract
would therefore have a Global scope and a ReponsePattern.

However, upon formalization of this contract and sub-
sequent validation with the requirement engineer, it was
discovered that this is the wrong interpretation. In fact,
t_SYSTEM_RESPONSE is the period of time between when
the EDL state is communicated to the Electronic Stability
Program (ESP). Clearly these are very different semantics,
which must be defined as early as possible in the EDL design
process.

Figure 8 shows the correct version of this contract. The
pattern is a Recurrence Pattern where the ReportState
event occurs periodically. Note that in this version of the
contract, the period t_SYSTEM_RESPONSE has been refined
to be 10 milliseconds.

2) Requirement Conflict: As the number of requirements
for a system grows, it becomes more likely that there will
be conflicts in how the requirements state that the system
should behave. For example, the EDL case contains two
requirements FR14 and FR10. FR14 states the following:
“The EDL must remain physically closed for a duration
t_POSTPONE_UNLOCK after a system shutdown request”.
However, FR10 states the following: “If the EDL is not yet
open at system initialization, it must be opened”. There is a
conflict in that if system shutdown and system initialization
occur within the duration t_POSTPONE_UNLOCK, it is am-
biguous whether the EDL should be opened or not.

In fact, this ambiguity was resolved in the metadata for
the requirements, which stated that the initialization behaviour

Fig. 9. Contract FR14, specifying the minimum duration of system shutdown.

had a priority over the shutdown behaviour. In the contract
language, this information is best formalized in the contract
itself to avoid misinterpretation. The rewritten FR14 contract is
presented in Figure 9. The description of the contract has been
updated, and the scope of the contract specifies that the pattern
is only valid after the shutdown event until the initialization
event is received.

D. Verification of STL

The contracts in the contract language are automatically
mapped directly to Signal Temporal Logic (STL), as stated
in Section III-E. This temporal logic is then verified on
the simulation traces of the system, with a negative result
indicating that the represented requirement is not satisfied by
the system. However, as this approach is simulation-based, if
the temporal logic is satisfied, this does not guarantee that the
system satisfies the requirement in all cases. This approach to
verification therefore requires that appropriate test scenarios
are provided for full coverage of the system.

As well, other system effects may also need to be taken
into account, depending on the kind of requirement and the test
performed. For example, in Table I on page 3, the requirement
logic locking command includes a notion of physical delays,
such as the worst-case executing time for a system software
component. These delays need to be reproduced in any model-
in-the-loop simulation, to simulate any software or hardware
delays present in the system.

Despite the above limitations, this contract-based verifi-
cation approach for validating requirements allows improve-
ments to be made throughout the design process, such as early
detection of errors in the early development phases, or for
validation of requirements throughout. These contracts can
also be used throughout the testing phase of the component



Fig. 10. Contract TR57, which determines the EDL state according to vehicle
dynamics.

design process, reducing the number of other assessments that
need to be developed.

1) Breach Toolbox: In this paper the Matlab toolbox
Breach [10] is used to verify the STL formulas. In particular,
this verification is performed on simulations of Simulink
system architecture models, which are (manually) created by
engineers to fully implement the behaviour of the system.
Note that currently there is no check that the Simulink model
conforms to the specification detailed in the Functional Safety
Formal Model meta-model, described in Section IV-A.

The Breach toolbox receives as input the STL contracts,
and the Simulink model of the system. As output, the Boolean
satisfaction of each STL formula is reported, as well as the
quantitative satisfaction. This quantitative satisfaction (also
termed robustness) demonstrates how far the STL formula is
from being true or false [11]. This information is useful in
a safety-critical context, as a requirement which almost fails
also requires attention.

2) Example: As an example, the TR57 requirement defines
part of the safety logic that determines in which state the
EDL is, according to the vehicle dynamics. In Figure 10,
the contract of this requirement is shown, including the
textual description. The scope is Global, as this contract
should hold at anytime. The pattern is a ResponsePattern,
as when the receiveDataCAN event is received, the
system must determine the EDL state, represented by the
vehicle_EDL_state event.

The first statement in this contract, receiveDataCAN,
refers to when data is received from the CAN data bus in the
vehicle, containing data from the vehicle sensors such as wheel

Fig. 11. Simulink component to determine EDL state of the vehicle

Fig. 12. Version of TR57 used for verification in Breach.

speeds. The second statement, vehicle_EDL_state, de-
fines the logic that will determine the state of the EDL
depending on whether the the vehicle is driving slow, cornering
or has a differential wheel speed (DWS).

This logic is implemented as a table which determines the
desired value of EDLVehicleState depending on differ-
ent cases. For example, if the DWS signal is false and the
Cornering signal is true, then the EDL state must be closed.
Note that this statement assumes that DWS, Cornering and
DrivingSlow are signals in the system, but this has not
been linked to an explicit system model as explained in Sec-
tion IV-A. Instead, these names come from the implementation
of this component in Simulink, shown in Figure 11.

For the verification activity discussed next, this contract and
component were tested in isolation. As the CAN signal was
not represented in this model, a version of the TR57 contract
was created with only the vehicle_EDL_State event, a
Global scope, and the Universality pattern where the event
should always hold. This version is shown in Figure 12.

3) Verification in Breach: Verification of STL formulas is
performed in the following steps: a) the Simulink model under
study is loaded, b) the Breach toolbox is initialized within
Matlab, c) the model is parameterized and simulated to log the
signals in the Matlab toolbox, d) the STL formulas are loaded
by Breach and verified against the signals, e) the Boolean and
quantitative satisfaction for each STL formula is presented to
the user, along with the decomposition of each formula.

The satisfaction plots for the TR57 contract are shown in
Figure 13. The satisfaction for the complete STL formula is
found in the bottom graph, with the textual formula above.
The three upper graphs are sub-formulas verified throughout
the entire simulation time, allowing the verification engineer
to understand the satisfaction result for the full formula.

For each graph, the red line demonstrates the Boolean



Fig. 13. Contract TR57, Boolean and quantitative satisfaction in Breach.

satisfaction for the formula throughout time, while the blue
line shows the quantitative satisfaction. This robustness in-
formation allows the verification engineer to examine how
close or far the formula was from failing. Note that for the
complete formula, the Boolean satisfaction is true throughout
the simulation. Therefore, this contract is satisfied.

V. RELATED WORK

Past literature has focused on improving and optimizing
design processes for industry, in an effort to lower time used,
cost, and number of errors.

A. Requirements

In the field of requirement engineering, ambiguity, com-
plexity and vagueness are common problems. The Easy Ap-
proach to Requirements Syntax (EARS) [12] is one method
to solve those problems. In this method, a ruleset with five
simple templates is introduced. By using the EARS templates,
requirements in an unstructured natural language are forced
into a simple structure, which reduces the complexity for
many requirements. Note that in our work, our industrial
requirements must be more specific, so we used the property
specification patterns combined with a statement language to
refer to signals.

The work of Meyers [13] builds contracts in a different
fashion to us. In that work, a domain-specific language is built
such that the engineer can refer to components in the system
at a high level of abstraction. This domain-specific language is
then transformed into a graphical language where the user can
build temporal logic formulas in the Linear Temporal Logic
(LTL) formalism. For example, the user can specify that for
all floors, after an elevator call button is pressed, the elevator

should eventually arrive. In contrast, our contract language is
built on STL which enables us to reason about signals.

B. Modeling of Functional Safety

The Functional Safety Formal Model (FuSaFoMo) de-
scribed in Section IV-A is similar to other formalizations
of the functional safety domain found in the literature. For
example, Taguchi provides meta-models for Failure Mode
and Effects Analysis (FMEA) and ISO 26262, as well as
their alignment [14]. Extraction of meta-models from safety
standards is presented as an approach by Luo et al. [15], and
a generic meta-model for “reference assurance frameworks”
has been created by de la Vara et al. [16]. In contrast to these
approaches, the FuSaFoMo focuses on the concept phase of
ISO 26262, such as item definition, hazard analysis and risk
assessment, and safety-critical functions.

C. Contracts and Contract Verification

Contract-Based Co-Design (CBCD) [1] is an approach
focusing on ensuring consistency of multiple viewpoints in
the design process. This allows the translation of contracts
to viewpoint-specific contracts, such as view for an electrical
engineer and another for a thermal engineer. As a result, the
inconsistencies arising from operating in different viewpoints
on a requirement can be reduced.

This paper performs verification of STL contracts on
traces of a simulation. Another approach is to apply assume-
guarantee reasoning on architectural models. Examples of this
include one of the first tools to verify contract refinement for
embedded systems, the Othello Contracts Refinement Analysis
(OCRA) tool [17], or the Assume Guarantee Reasoning Envi-
ronment AGREE tool [18]. Both of these tools verify Linear
Temporal Logic (LTL) constraints which are defined on an
architectural model similar to the Functional Safety Formal
Model described in Section IV-A.

The Breach tool is used in our paper to verify our STL
formulas and calculate the level of satisfaction of a formula on
a signal (termed robustness) [19]. Another similar tool, which
operates on an extension of STL, is AMT 2.0 [20]. AMT
also allows trace diagnostics on top of property satisfaction
checking, by using the error diagnostics algorithm described
in [21]. Balsini et al. [22] also introduced a tool to generate
Simulink monitors from STL constraints, enabling designers
to analyze system specifications during Simulink simulations.

For verification at system runtime, the contract monitor must
run directly on the deployed system. It is important that the
verification does not interfere with the analyzed system. A tool
that accomplishes this is Brace, a runtime verification system
that allows efficient, and scalable runtime monitoring [23].

The Simulink Oracles for CPS Require-menTs with un-
cErtainty (SOCRaTes) approach [24] defines the Signal First
Order logic (SFOL) language for defining requirements for
cyber-physical systems, which subsumes STL. SFOL is then
transformed into Simulink monitor blocks, which provide
robustness information and can terminate simulations if errors
are detected. Although the approach is very similar, our



approach provides a contract language for the requirement
engineer which is closer to natural language with the definition
of scopes and patterns.

VI. CONCLUSION

Improving the design process of a system can reduce the
development cost and time to market. In this paper, we focus
on the formalization and partial verification of requirements to
remove ambiguity and detect issues early. This formalization
is achieved with the definition of a contract language and
the automatic mapping of those contracts into temporal logic
which can be verified on a simulation.

The ISO 26262 standard [2] demands requirement-based
testing. Validation of requirements is necessary to achieve
process compliance, especially for systems with higher Au-
tomotive Safety Integrity Levels (ASIL). These ASIL are
mandated by ISO 26262 to require greater risk management,
along with increased traceability during the design process.
This paper shows that an early validation of requirements
is possible during model-in-the-loop (MiL) testing, helping
achieve compliance of the design process with the ISO 26262
standard.

This paper has presented brief details about the contract
language, such as the property specification patterns and the
statement language. As well, we show industrial requirements
from our case study that have been found to be ambiguous by
being formalized in the contract language. This formalization
therefore results in the reduction of misinterpretations and
improvement of the quality of the requirements through during
the different stages of the design process.

As an industrial partner in the aSET project, Dana Bel-
gium NV has seen great potential in using the contract-
based requirements technology in the design and development
of safety-critical functions. “Safety functions” are especially
suited for this as they need to be simple (as in non-complex)
in nature, and formalization helps in attaining the (process)
requirements for the higher safety integrity levels. Dana is
planning on incorporating the contract-based requirements
technology as part of the current day-to-day practices for
validating safety-critical systems.

For future work, we plan to validate further industrial
requirements. This involves collaboration with our industrial
partners to improve and extend the concepts, statements, and
validation methods for the contract language, and improve
the usability of our approach. Additionally, the full syntax,
semantics, and expressiveness of the contract language must be
precisely defined to allow the requirement engineer to reason
about which system properties can be expressed and verified.
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